
CS 0368-4246: Combinatorial Methods in Algorithms (Spring 2025) March 31, 2025

Lecture 3: Cycle Finding and Lower Bounds for Algorithms

Instructor:Or Zamir Scribes: Ilai Segev

1 Introduction

In previous lectures, we explored probabilistic algorithms for finding simple structures in graphs, such

as paths and cycles. In this lecture, we continue this theme by introducing randomized methods for

detecting cycles of even length, particularly C2k. We also begin our exploration of fine-grained complexity

and conditional lower bounds, based on widely believed conjectures such as the Strong Exponential Time

Hypothesis (SETH).

2 Cycle Finding

Theorem 1. For any fixed k, it is possible to determine in O(n2) whether the graph contains C2k.

Lemma 2. Let there be a connected graph with at least 2tn edges, where the vertices are colored with

at least three colors. Then, the graph must contain a path Pt whose endpoints are colored with different

colors.

If the graph is not bipartite, then two colors are sufficient.

Moreover, such a path can be found in time O(m).

Proof. Since m > tn the graph contains a θ-graph with girth > t, therefore such a graph can be found in

time O(m), denote it H.

It’s possible to check in time O(n) whether H is t-cyclic.

Why? Each vertex “initiates” at most 8 simple paths of length t in H. We first transfer the graph to

an array and then check in time complexity of O(1) for each vertex.

If H isn’t t-cyclic, we’re done (we found a path).

Assuming it is, by the lemma from last week, H is 2-cyclic. Inside H there are only two colors. Take a

vertex v in the graph that is colored with a different color than the two in H.

Find the shortest path (using BFS) from v to H. This path is simple and touches H only at its endpoint.

Extend the simple path on H by more than t steps such that the total length is divisible by t.

Now the path “breaks” into a sequence of simple paths of length t, where the first and last vertices are

colored differently. So at least one of these paths must “switch color”.

Now assume also that G is not bipartite. If we used 3 or more colors, we finished as before.

Otherwise, G is colored with 2 colors, then there must be an edge whose endpoints share the same color,

denote this edge (u, v).

If H is colored with a single color we’re done (as in the previous case). Otherwise, we’ll find a path from

u to H. We may assume it does not pass through v, since at least one of them has a path to H that

doesn’t go through the other.

1

We extend the path to obtain a path from vto a vertex on H with length divisible by t. If we add one

more edge on the cycle, we get such a path from u.

Either one of the paths we found is path Pt whose endpoints are colored with different colors, or there are

two adjacent vertices in H with the same color, but this contradicts our assumption that H is 2-cyclic.

Proof of Theorem.

Algorithm 3. Takes as input a graph G and vertex v.

In time O((k + 2)! · n) checks whether there exists any C2k in G, or whether there is no C2k passing

through v.

Once we have such an algorithm, we can run it on every vertex in the graph.

* Start a BFS traversal from v and during the run maintain the following:

Figure 1: BFS Traversal

• The layers Li and their sizes.

• The edges within each Li and how many there are.

• The edges between Li and Li+1 and how many there are.

We stop the BFS if any of the following occurs:

1. We have finished traversing over the graph, or over the layer Lk−1.

2. For some i, 4k|Li| < e(Li).

3. For some i, 4k(|Li|+ |Li+1|) < e(Li, Li+1).

What do we do in each stopping case?

1. If there exists a C2k that passes through v, then we must have seen all its edges. How many edges

did we collect? O(kn)

We learned how to find in lecture 2 in time O((k+2)! ·m′): * Checking Whether there exists a C2k

that touches v. * All the vertices reachable from v by P2k−1.

2. Note that if 4k|Li| < e(Li) then there exists a connected component within Li that satisfies this

condition. We restrict ourselves to it, and denote it by L′
i.

Assuming that L′
i isn’t bipartite, We’ll find the LCA (lowest common ancestor) of the vertices in

L′
i in the BFS graph.

2

How? We’ll take Li and build a set of their neighbors in Li−1, then their neighbors in Li−2, and

continue this process until the first time we get a set of size one.

Call the resulting vertex u. The vertex u has more than one child in the BFS tree restricted to L′
i.

We can now color the vertices of L′
i in two colors, one for the descendants of the first child a, and

the other for the descendants of the other children.

Now all that’s left is to find in L′
i a simple path of length 2k− 2 (i− depth (a)) between two vertices

of different colors.

Using the paths from u, we can complete this into a cycle C2k.

* If L′
i is bipartite, denote L′

i = K ′
i ∪R′

i.

We proceed similarly: instead of finding the LCA of all of L′
i we find the LCA u of just one side of

the bipartite, say K ′
i.

We color the vertices in K ′
i with 2 colors as before, and assign a third color to all vertices in R′

i.

By the lemma, there exists a path Pt for t = 2k − 2 (i− depth (u)) that connects two vertices of

different colors within L′
i. If the endpoints are both from the two different colors in K ′

i, we’re done.

This must be the case: a path of even length in a bipartite graph must start and end on the same

side, so such a path can’t connect K ′
i, R

′
i if it’s even length.

3. Same as above - K ′
i = L′

i (the closer set).

Theorem 4 (Bondy-Simonovits). ex (C2k, n) ≤ 100kn1+ 1
k

Proof. When does the algorithm fail to find a C2k? Only case 1 might return false.

We will use the given bound to reduce the graph to a subgraph G′ with minimum degree of at least

100kn1/k.

We run the algorithm on G′ and we will show that it cannot stop because of case 1. Therefore, it must

return C2k.

Assume by contradiction that condition 1 holds.

That means we built the layers L0, ..., Lk−1 (and possibly a part of Lk), and neither condition 2 nor 3

occurred.

From this, we know that for every 1 ≤ i ≤ k− 1 the number of edges touching the vertices of Li satisfies

12k (|Li|+ |Li−1|+ |Li+1|) ≥ Li

But we also have a lower bound on this quantity due to the minimum degree |Li| 100kn1/k

From this we can deduce:

|Li+1|+ |Li−1| ≥ |Li|
(
n1/k · 100− 1

12

)
Using this recurrence, we can prove by induction:

|L1|+ . . .+ |Li| > 2ni/k

In particular, |Lk| > 2n, which is a contradiction, since the number of vertices in the graph is n.

3

3 Lower Bounds for Algorithms

We currently do not know how to prove nontrivial lower bounds on the running time of specific problems.

Therefore, we focus on alternative approaches:

• Lower bounds under restricted computational models, e.g., comparison-based sorting

• Lower bounds under assumptions/hypotheses, like reductions in complexity theory.

3.1 Fine-Grained Complexity

We aim to take the concept of reductions from complexity theory,

for example: SAT is not in P ⇒ Graph-Coloring is not in P

But make the conclusions more ”fine-grained”, distinguishing between problems that are all solvable in

polynomial time, yet with different polynomial complexities. * This requires finer reductions, but also

finer conjectures.

What kinds of hypotheses are even reasonable to consider?

Previously, we had: SAT is not in P.

We can refine it to: SAT requires exponential time.

Even further to: SAT takes Cn for some constant C.

3.2 SAT

• Naive algorithm: O∗(2n) where O∗ hides subexponential factors (Cook, 1971).

• k-SAT

If k = 2 solvable in polynomial time (even linear).

If k ≥ 3 NP-Complete (Karp, 2009).

• For general SAT, no algorithm is currently known that beats O∗(2n).

• For k-SAT, we do know algorithms with running time (2− εk)
n for some ϵk > 0 (Monien and

Speckenmeyer, 1985) (Hansen et al., 2019)

In all of these works: εk −−−→
k→∞

0

3.3 Hypotheses – (Impagliazzo, Paturi, and Zane, 2001)

1. ETH (Exponential Time Hypothesis): SAT or 3-SAT takes Cn for some C.

2. SETH (Strong ETH): ∀ε > 0∃k s.t. k − SAT /∈ Time ((2− ε)n)

4

3.4 Popular Hypotheses

1. SETH

2. APSP /∈ n3−ε for any ϵ > 0.

3. Triangle Detection:

• Weak version: cannot be solved in near-linear time m1+o(1).

• Strong version: cannot be solved in time better than n2−ε when m ≤ n3/2

3.5 Reductions from SETH to Problems in P

Problem: Orthogonal Vectors (OV)

• Input: Two sets A,B ⊆ {0, 1}d whith |A|, |B| ≤ n.

• Output: Determine whether there exist vectors a ∈ A, b ∈ B such that they are orthogonal:

⟨a, b⟩ =
d∑

i=1

aibi = 0

• Algorithms

– Naive solution: Try all n2 pairs, O(n2d) ≈ n2+o(1)

– In time n2d - insert one of the sets into a hash table. For each vector in the other set, check

whether any orthogonal vector exists in the table.

• Assuming d = ω (log n), typically d = polylog(n)

Theorem 5. Under SETH, OV cannot be solved in time n2−ε for any ϵ > 0 when d = polylog(n)

Proof. Let the input be a k-CNF formula with N variables and M clauses.

Denote the variables as: x1, ..., xN . Divide them into two halves:

xA =
{
x1, . . . xN/2

}
, xB =

{
xN/2+1, . . . xN

}
We will construct two sets of vectors A,B such that: n = 2N/2, d = polylog(n).

For each assignment to the variables in xA, create a vector of length M , coordinate i is 0 iff the assignment

satisfies clause i on its own.

Similarly, build vectors for B.

Claim 6. There exist a ∈ A, b ∈ B such that

⟨a, b⟩ = 0 ⇔ There exists a satisfying assignment for the formula.

Proof. ⇒ Assume a corresponds to an assignment for variables in xA and b corresponds to variables in

xB. Together, they define an assignment to all variables.

The assignment satisfies, because for any clause the relevant coordinate is 0 either for a or b, since

5

⟨a, b⟩ = 0.

Now assume we have a satisfying assignment for the formula. This assignment corresponds to a unique

pair (a, b) of the reduced assignment of xA, xB.

We claim that ⟨a, b⟩ = 0.

For each clause i the full assignment satisfies it. Thus, at least one variable in it is 1, which is in xA or

xB. Therefore, ai = 0 or bi = 0.

We’ve constructed an instance of the OV problem such that solving it gives the answer to the original

k-SAT problem.

Where n = 2N/2 and d = M = O(Nk) = O(logk n).

Note: There exists a theorem in complexity theory called the Sparsification Lemma, which says that

any k-SAT formula can be rewritten with only O(N) clauses.

3.6 Another Example - Diameter

Given an undirected and unweighted graph G, compute its diameter: the longest shortest path in the

graph maxu,v∈V 2 dG (u, v).

Naive solution: Assume that m = n1+o(1), The problem can be solved by running BFS from each

vertex, resulting in an overall time complexity of O(n2+o(1)).

Theorem 7. Under SETH, there is no algorithm that computes the diameter of an unweighted graph

with m ≤ n1+o(1) in time O(n2−ϵ) for any ϵ > 0.

Proof. We reduce from OV, constructing graph G as the following figure:

Figure 2: Graph G

Let A,B ⊆ {0, 1}d, We construct vertex sets VA, VB, Vd corresponding to the vectors in A,B and the

coordinates d. For each a ∈ A the corresponding Vertex in VA is connected to all vertices in Vd that

correspond to coordinates where a has a 1. Similarly, for each b ∈ B

Key Observation: for each a ∈ VA, b ∈ VB

d (a, b) =

{
2 ⟨a, b⟩ ≠ 0

> 2 ⟨a, b⟩ = 0

Why? a, b share at least one neighbor iff ⟨a, b⟩ ≠ 0.

If ⟨a, b⟩ = 0 then d (a, b) ≥ 4 because G is a bipartite graph.

6

We’ll add Vertices {x, y} such that V = VA ∪ VB ∪ Vd ∪ {x, y}:

Figure 3: The Updated Graph G

• For all pairs not of the form (a, b) ∈ VA × VB, distance is at most 2.

• For pairs (a, b) ∈ VA × VB, we did not create a path of length at most 2 unless such a path already

existed.

Conclusion

Diam (G) > 2 ⇔ ∃a ∈ VA, b ∈ VB, dG (a, b) > 2 ⇔ ⟨a, b⟩ = 0

Therefore, solving the diameter problem solves OV.

The graph size is: |V | = 2n+ d+ 2 = O (n), |E| = O (nd) = n1+o(1)

References

[1] Stephen A. Cook. “The complexity of theorem-proving procedures”. In: Proceedings of the Third An-

nual ACM Symposium on Theory of Computing. STOC ’71. Shaker Heights, Ohio, USA: Association

for Computing Machinery, 1971, pp. 151–158. isbn: 9781450374644. doi: 10.1145/800157.805047.

url: https://doi.org/10.1145/800157.805047.

[2] Thomas Dueholm Hansen et al. “Faster k-sat algorithms using biased-ppsz”. In: Proceedings of the

51st Annual ACM SIGACT Symposium on Theory of Computing. 2019, pp. 578–589.

[3] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which problems have strongly expo-

nential complexity?” In: Journal of Computer and System Sciences 63.4 (2001), pp. 512–530.

[4] Richard M Karp. “Reducibility among combinatorial problems”. In: 50 Years of Integer Programming

1958-2008: from the Early Years to the State-of-the-Art. Springer, 2009, pp. 219–241.

[5] B. Monien and E. Speckenmeyer. “Solving satisfiability in less than 2n steps”. In: Discrete Ap-

plied Mathematics 10.3 (1985), pp. 287–295. issn: 0166-218X. doi: https://doi.org/10.1016/

0166 - 218X(85) 90050 - 2. url: https : / / www . sciencedirect . com / science / article / pii /

0166218X85900502.

7

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/https://doi.org/10.1016/0166-218X(85)90050-2
https://doi.org/https://doi.org/10.1016/0166-218X(85)90050-2
https://www.sciencedirect.com/science/article/pii/0166218X85900502
https://www.sciencedirect.com/science/article/pii/0166218X85900502

	Introduction
	Cycle Finding
	Lower Bounds for Algorithms
	Fine-Grained Complexity
	SAT
	Hypotheses – impagliazzo2001problems
	Popular Hypotheses
	Reductions from SETH to Problems in P
	Another Example - Diameter

